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Abstract.

This work investigates the breakdown of the continuum relations for diffugelocity in inert binary gas mixtures. Values
of the relative diffusion velocities for components of a gas mixture magaeulated using of Chapman-Enskog theory
and occur not only due to concentration gradients, but also pressdremperature gradients in the flow as described by
Hirschfelder. Because Chapman-Enskog theory employs a lineturlpa&tion around equilibrium, it is expected to break
down when the velocity distribution deviates significantly from equilibrium. Dnéakdown of the overall flow has long been
an area of interest in rarefied gas dynamics. By comparing the continalues to results from Bird's DS2V Monte Carlo
code, we propose a hew limit on the continuum approach specific to lgaass. To remove the confounding influence of an
inconsistent molecular model, we also present the application of the lahatdl sphere (VSS) model used in DS2V to the
continuum diffusion velocity calculation. Fitting sample asymptotic curves tobakdown, a limityyax, that is a fraction of
an analytically derived limit resulting from the kinetic temperature of the mextsiproposed. With an expected deviation of
only 2% between the physical values and continuum calculations wittigy /4, we suggest this as a conservative estimate
on the range of applicability for the continuum theory.
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INTRODUCTION

The primary goal of this work is to determine the range of maylility for the continuum model for diffusion velocity.
We plan to apply the resulting limit to diffusion velocitisscontinuum simulations of gas mixtures in future work. In
hybrid codes such as those of Garcia and Bell in Referen¢@g [driteria are also needed for predicting the breakdown
of the continuum model for algorithm adaptation. We hops timit serves as one such criteria for breakdown in
diffusion velocity to ensure a consistent handoff betwdgorghms.

Our group investigates the response of low density gas nvjtbtential inertial fusion energy (IFE) power plant
chamber designs between subsequent fusion events [3, 4elén studying the multi-component extensions to the
Navier-Stokes equations because fusion byproducts wilirmalate in the chamber during steady state operation. In
extending our code to multi-component mixtures, we fourad the strong pressure and temperature gradients drive
the gas mixture composition out of equilibrium within theaohber due to the thermal- and baro-diffusive effects as
predicted by Chapman-Enskog theory [5].

Sherman used Chapman-Enskog theory to analytically soihihé structure of shocks in binary gas mixtures [6].
When this solution was applied to mixtures with trace heawnponent gas, it was shown to produce erroneous
undershoots in the heavy component density both experaiheiy Center [7] and numerically by Bird [8]. Since
these early results, continuum solutions for gas mixtueasegally neglect the thermal- and baro-diffusive effects
in favor of Fickian diffusion only. Some early exceptionglude the work at Sandia National Laboratories on
transport properties for combustion [9] and the work on istgbn Rayleigh Bénard flow for binary mixtures by
Gutcowicz [10, 11] and Abernathey [12]. The Rayleigh Bénaodk is interesting in that it demonstrates a significant
destabilizing effect resulting from thermal diffusion hdut any rarification. This suggests that the effect may have
significant macroscopic consequences in continuum flowshodld not be neglected a priori. A thorough description
of recent advances in multicomponent flow modeling is foun@iovangigli’'s work [13].

While validating our multi-component code, we found neadgritical results to Sherman’s solution when applied
to 1D-shock waves [5]. Though this result included the ezoars density undershoot, it provided confidence that the
results were consistent with Chapman-Enskog theory amdtlylialid in regions of the flow close to equilibrium. It
also sparked our interest in the nature of this type of breakdn the continuum theory.



The case that produced the most significant undershoot ivaligtation studies was a He:Xe mixture shock at
Mach 4.38 with 3% Xe based on Herczynski's experimentalsgtd]. The shock produced diffusion velocities on
the order of the sound speed in our calculations. In thisezavbrk [5], we considered applying a limit on the diffusion
velocity with bounds at the thermal speed based on Orangestign of a limit of a few percent of the thermal speed
[15]. Applying this limit to the our validation cases, we falithat it produced no change for the weak shocks but
significantly narrower shocks with less undershoot for ttneng shock case. With only a few experimental results
available, we could not determine an optimal fraction oftthermal velocity for the diffusion velocity limit or even
whether it should include a dependence on local composition

In this work we attempt to answer these question using B2V Monte Carlo code to perform computational
experiments across a wide range of flow conditions. We uséunaix of noble gases in under-expanded jets based
on Rothe’s experimental setup [16, 17] to probe these ciondit The continuum diffusion velocities are calculated
using the average pressure, density, composition and tetope fields from the DS2V solution to avoid confounding
influences from other continuum breakdowns expected inl@dmtinuum solution.

CALCULATION OF DIFFUSION VELOCITY

The diffusion velocityVg, is defined in Equation 1 as the difference between the ageralgcity of particles in one
gas species relative to the mixture mass average velogityf the bulk fluid defined in Equation 2. Equation 3 shows
the constitutive relation for the diffusion velocity of tis¥ species in a mixture resulting from Chapman-Enskog
theory. The formulation follows that of Reference [9] usagixture diffusion coefficientDgy,, defined in terms of
the normal binary diffusion coefficient®s, in Equation 4. The binary diffusion coefficient is calceldtin terms

of the average molecular diametdys, reduced massyys, and collision integraIergl* as shown in Equation 5. The
thermal diffusion ration@s, to first approximation is shown in Equation 6 in termskafas seen in Equation 7. The
ratios of collision integralsd*, B*, andC*, are all equal to unity for the hard sphere model and are géynaveak
functions of temperature for other inter-molecular foroedeis.
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To ensure the Monte Carlo and continuum diffusion velositigferences result from a breakdown in the continuum
approach rather than the molecular model, collision iratisgsing the variable soft sphere (VSS) molecular model are
needed. Equation 8 shows these integrals as derived fradts Biescription of the VSS model using Chapman-Enskog
theory [18]. In the collision integrals;+ 1/2 is the temperature viscosity power lawjs the VSS parameter adjusted
to match both the viscosity and diffusion coefficient, dfhgk is a constant defined to match the gas viscosity at a
reference temperature. For collisions between unlikeiepethe mixture values of these parameters were calculated
using the averages found in source of Bird's DSMCO code [d&]isure an equivalent treatment with DS2V.




/ r=96mm
/

Jet Boundary /

- Barrel Shock
— Mach
Disc

Expansion
x=-24mm

x=248mm
Fixed
Pressure

Axis of Symmetry
Outflow

Chamber
Stream

\
\

Chamber Stream r=96mm

FIGURE 1. Monte Carlo geometry (blue) and boundary condition§IGURE 2. Argon molar percentage
(black) relative to flow regions (green). The inside of the nozzle is ethrkthroughout the flow. Front side shows

in red to denote fixed choked sonic conditions within the region. Monte Carlo solution and back side shows
experimental results from Rothe’s electron
beam study.
oii* _T(B=V) (Eeer Vo2
VSS 2 kT ) a+1
qr2* _T(4=V) (Eer Vo2
VSS 6 KT ) a+1
o13* _T(5=V) (Erer o2
VsS 24 KT ) a+1
* r(4— V) Eref 60
22 * &= V) (Eret 8
VSS 6 (2kT> (a+1)(a+2) ®

COMPARISON OF CONCENTRATIONSAND DIFFUSION VELOCITIESFOR
EXPERIMENTAL CONDITIONS

Rothe’s experimental setup [16, 17] for electron beam swdf He:Ar mixture under-expanded free jets was used
for boundary conditions in DS2V. In the experiment, a 12%oarmixture at 2.56 mmHg expands through a 15 mm
diameter sonic orifice into a chamber at a pressure qihHg. This orifice was in a flat plate affixed to a 47.5 mm
diameter converging nozzle. In the simulations, a unifohoked flow is used to approximate the plate orifice. Figure
1 shows the numerical domain used in DS2V as well as its rafteciver the axis of symmetry. The flow from the
nozzle is shown broken down into regions consisting of thgaasion, Mach disc, barrel shock, and streamline jet
boundary. Flow within the expansion closely resembles a diiescal expansion centered slightly downstream of
the orifice. The diffusion velocities within this region rain relatively small, consistent with Bird’s result for 1kzé
expansions [18]. However, in the Mach disc and barrel shaxdgel diffusion velocities produce significant composition
variation. Rothe’s setup was selected because experityemiasured argon concentrations throughout the flow are
provided. Figure 2 shows both the DS2V and experimental @anations adjacent to each other. This figure shows
that DS2V reproduces the concentration variations withéjét providing confidence in DS2V'’s diffusion velocities.
The only significant difference between the experiment aS@Ws results occur in the region outside the edge
of the jet extending to the boundary. This difference isllikdue to differential vacuum pumping fluxes between the
gases [19] which would result in argon enrichment withinchamber in the experiment. Because this value was not
experimentally measured beyond the apparent composititie @dge, in this work the chamber boundary conditions
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FIGURE 3. Comparison of radial (left) and axial (right) diffusion velocities in (m/ghieen the DS2V results (bottom) and
equivalent continuum values (top).

were set to equal the jet composition. Regardless of thecttaenber composition, because the continuum diffusion
velocity calculation depends only on the DS2V fields, theticmum calculation remains consistent with DS2V’s
results for the remainder of this work.

Figure 3 shows the radial and axial components of the ddfusielocity for the experimental configuration as
calculated by DS2V as well as the associated velocitiesdbarethe continuum formulas resulting from DS2V'’s
average pressure, density, and temperature fields. Ndtéhéheontinuum results appear noisier than the Monte Carlo
side because the derivatives of the average fields needeadcudate the diffusion velocity amplify the fluctuations
inherent in the Monte Carlo result. Other than this noise léngest discrepancy appears between the axial diffusion
velocities in the highly rarefied region adjacent to the hezz

DIFFUSION VELOCITY LIMIT

The diffusion velocity and transport coefficients resutinfr Chapman-Enskog theory and therefore assume a small
perturbation from equilibrium for the velocity distribati. Within shocks and rarefied flows, both of these assump-
tions can break down. For mixtures, the perturbation astomglearly fails whenever the diffusion velocities are
large relative to the thermal velocity. The theory also asssi sufficient collisionality to ensure equal and isotropic
temperatures for all gas components. To derive an absofytterdimit on the diffusion velocity for a given mixture
kinetic temperature, we consider Bird’s definitions of tlieekic temperature and species kinetic temperature [18] as
seen in Equations 9 and 10. This species kinetic temperaturde shown to be proportional to the sum of squares
about the species mean velocity plus the square of the spdiffigsion velocity. Equation 11 combines these equations

defining an individual species thermal veloaity = (vis— Vis)? for the sake of readability.
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We define a Cartesian velocity coordinate system such tleadliffusion velocity is aligned to the-coordinate.
The expansion of Equation 11 for these coordinates is shaviEguation 12. Consistent with the single isotropic
temperature assumption of Chapman-Enskog theory, we asthercontributions of each direction’s kinetic energy
is equal to the overall kinetic temperature therefore th&tinaum temperature. Using this assumption, Equation 13
shows the remaining direction contribution. This equation can then be simplifie relate the quantities back to the
bulk sound speed, as seen in Equation 14.
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For binary mixtures, this can be taken further to provide artabon the diffusion velocity. The maximum diffusion
velocity occurs whe;2 = 0 for one of the gas species. This does not necessarily omeultaneously for both gases,
yet the limits are connected through the definition of théudibn velocity. Combining the definitions of the diffusion
velocity and mass average velocity, it can be shown thatpgleies densities multiplied by diffusion velocities sum to
zero as seen in Equation 15. This means that for a binary mmuVi,; = —p2Vi,. Using this relationship, we define
a mean diffusion velocityy; = \/P1/P2Vi1 = —+/P2/P1Viz such that both components of diffusion velocity can be
scaled to be equal in magnitude in opposite directions. Wexassume thdt,? +\4?) is equal to the thermal velocity
squared of the specids[i, /my, in the species that is not limited whitgg =0 in the limited direction. Using the
definition in Equation 14 results in Equation 16 after simgdigebraic manipulation.

zpsviszo (15)
S
Ve = Lmin(2e % (16)
*max y Yo' Yq

We can now define the species maximunVags = %\/pr/pS |\7X’max' Scaling both velocity components by their
correspondind/maxs allows the components to be plotted symmetrically togetemrauseVs/Vimaxs = —Vr /Vmaxr -
Figure 4(a), shows an example case for a He:Ar jet with a 56088position. Figure 4(b-c) contains plots for He:Ar,
He:Xe, and Ar:Xe systems. Each figure is the sum of 9 initiahjéctures such as the one depicted in Figure 4(a).
Each set of 9 ranges between 10:90 and 90:10 in 10% increnfdmplots use a log scale with the color representing
the number of points, N, contained by each cell on a grid witssalution of 100-cells per 1 normalized velocity unit.
In Figure 4, we scale both the Monte Carlo (DSMC) and contimCont.) diffusion velocity calculations by these
Vimax limits.

A tanh curve is included based on a best fit for the data points aeregde range of gases and mixtures against
several test curves includinignh, er f, and a scaletan™. The test curves were selected with the constraints that the
curve’s slope must be 1:1 near the origin where the pertimfrom equilibrium are small and that the curve must
asymptote tot-1 at infinity. The factor of 12 in the limit resulted from this fitting procedure as well tgh cases
with more significant breakdown are needed to confirm thisltégcause the fitting procedure breaks down for cases
when the points do not deviate significantly beyond the naksive to the 1:1 line.

Though the bulk of the points lie on or near the 1:1 line neardhigin, the plots all exhibit a bulge around the
origin. This is due in large part to the noise in the low dgneggion exterior to the jet. This can be seen in the noise
on the top half of the plots in Figure 3. The flowfield output &2/ lacks sampling cell grid information providing
only unstructured point values. Significant noise is intreel from resampling these unstructured data points onto
a uniform mesh to calculate the diffusion velocities. Ceansiform meshes under-predict the maximum diffusion
velocities because the gradients are reduced. Fine mespisethe maximum velocities but produce noise because
of erroneous gradient calculations from sub-sampling taese sampling cells in highly rarefied regions of the flow.

CONCLUDING REMARKS

The results would be improved if the continuum diffusionogiy calculation was internalized in the Monte Carlo
solver and averaged over multiple steps rather than at @peshot solution. This change would also enable calculation
of continuum diffusion velocities on the natural DS2V saimglcell grid rather than an artificial uniform mesh. With
these change, the fluctuations in the highly rarefied poniothe flow could be significantly reduced providing a
clearer view of the continuum breakdown.
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FIGURE 4. Scaled DSMC versus Continuum diffusion velocities for a single cased(&p3e:Ar expansion jet simulation as
well as log plots of accumulated point counts for jet simulations from 10% 8f each component for (b) He:Ar system, (c)
He:Xe system, and (d) Ar:Xe system.

Assuming thetanh curve represents a reasonable first approximation, we d¢anagés the potential error in the
continuum diffusion velocity. We expect 2% error arowigx/4, but this value jumps to.3% error when that
diffusion velocity doubles. Depending on the other errorshie application and sensitivity of the solution to these
errors, this provides insight on the range of applicabil@gses with stronger shocks than those resulting from these
expansion jets are needed to populate the higher expeattidwem diffusion velocities to ensure that the deviation
continues and to verify saturation of the upper bound.

In the future we hope to apply thanh curve as the factor on the thermal velocity limit in a full tiomum flow
calculation to determine if the change can extend the rafiggmicability for this model though other continuum
breakdowns are likely. We would also like to investigatehiStestimated deviation can be used to switch between
algorithms in a hybrid Monte-Carlo continuum code and deiee how convergence is effected as a function of the
expected deviation.
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